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Abstract . 
It is known that two-dimensional lower branch Tollmien-Schlichting waves described 

by triple-deck theory are always stable for planar supersonic flows. Here the possible 
occurrence of axisymmetric unstable modes in the supersonic flow around an axisymmetric 
body is investigated. In particular flows around bodies with typical radii comparable with 
the thickness of the upper deck are considered. It is shown that such unstable modes exist 
below a critical nondimensional radius of the body ao. At values of the radius above a0 
all the modes are stable whilst if unstable modes exist they are found to occur in pairs. 
The interaction of these modes in the nonlinear regime is investigated using a weakly 
nonlinear approach and it is found that, dependent on the frequencies of the imposed 
Tollmien-Schlichting waves, either of the modes can be set up. 

This work was supported under the National Aeronautics and Space Administration 
under NASA Contract No.NAS1-18107 while the authors were in residence at ICASE,NASA 
Langley Research Center,Hampton VA23665. 
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1. Introduction. 

It is now well-known that lower branch Tollmien-Schlichting waves in incompressible 
boundary layers are governed by triple-deck theory. The linear description of Tollmien- 
Schlichting waves near the lower branch of the neutral curve in the wavenumber-Reynolds 
number plane (in the limit of large Reynolds number) was given by Smith (1) whilst the 
extension into the corresponding weakly nonlinear regime was given by Smith (2). It was 
shown in the latter paper that nonlinear effects stabilize the linear growth of the waves so 
that as they propagate downstream a local equilibrium state is reached. Both two- and 
three- dimensional modes can be described by this approach and it was shown by Hall and 
Smith (3) that when nonlinear effects first become important nonparallel effects cannot be 
ignored. Further downstream the waves adjust in a quasi-parallel manner to the local flow 
conditions. 

As the disturbance moves downstream its amplitude grows and ultimately the large 
amplitude high frequency state of Smith and Burggraf (4) is set up. Here the disturbance 
has a Stokes layer at the wall and resonant triad interactions can occur (Smith and Stewart 

For supersonic planar flows the complex eigenrelation for two-dimensional Tollmien- 
Schlichting waves has only stable solutions. Here the possible existence of unstable ax- 
isymmetric modes in supersonic flows is discussed. We show that such modes exist when 
the nondimensional radius of the body about which the fluid flows falls below a critical 
size. This is consistent with the planar result which is achieved in the limit of large body 
radius. 

In fact we find that unstable modes occur in pairs so that in the finite amplitude 
regime a nonlinear interaction problem must be set up in order to see which is the pre- 
ferred mode. This is done using the approach of Hall and Smith (3) and we find that 
the interaction is characterized by a pair of coupled cubic nonlinear ordinary differential 
amplitude equations. The solutions of these equations depend on the values of the coeffi- 
cients appearing in them. The latter coefficients depend on the radius of the body so that 
a different bifurcation structure is found as the radius varies. We show that, depending on 
the radius and frequencies of the Tollmien-Schlichting waves, two types of stable solution 
are possible. 

In the next section we formulate the triple-deck problem which governs lower branch 
Tollmien-Schlichting waves in supersonic flows. In $3 these equations are solved for dis- 
turbances so small that linear theory is a valid approximation. In $4 the weakly nonlinear 
nonparallel interaction of the two possible instability modes of $3 is discussed. In $5 we 
discuss the results of the interaction problem of $4 and draw some conclusions. 

2. Formulation 

In this study we are concerned with the stability of an axisymmetric boundary layer 
which forms on a cylindrical body of radius a*,  in a uniform supersonic stream of velocity 
U, directed along the axis of the cylinder. 

( 5 ) ) .  
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Suppose that L* denotes a typical streamwise lengthscale, Y S ,  the kinematic viscosity 
of the fluid , then the Reynolds number Re is defined to be 

Re = Uo0L*/v&; (2.1) 

= Re-'/* (2.2) 

this will be taken to be large throughout this paper, and so the parameter 

may be taken to be small. 

It will be assumed that * 

which defines the scale of the radius of the body (this follows the order of a* considered 
by Kluwick et a1 (6). 

The scalings of the various components of the solution then fall broadly into the 
triple-deck model. The following non-dimensional variables are defined 

r* 
& 3 L *  ' 

f =  - x * - L *  - x - 1  x =  -- 
&3 L* E3 ' 

Here x * ,  r* denote streamwise and radial cu-ordinates respectively, u* , u* the corresponding 
velocity components, c* the speed of sound, p;$ the fluid density in the external flow, 
p*(pl$) the pressure (in the external flow), and t* denotes time. 

The stability of the flow is investigated at  a downstream location. Here the boundary 
layer thickness is O(e4L*), which is somewhat thinner than the radius of the body; we are 
thus concerned with streamwise locations relatively close to the leading edge of the body. 
At  the axial position in question, we suppose that the skin friction is A E - ~ / L * ,  and in 
Section 4 we shall incorporate non-parallel effects into our study by allowing streamwise 
variations of A. 

The first layer of the triple-deck to be considered is the upper deck, wherein f = O(1). 
The solution develops (Kluwick et a1 (6 ) )  as follows 

u = 1 + & 2 U l ( X ,  f ,  q+, 
u = € 2 U l ( X , f , f ) + ,  

p = e 2 p 1  ( X ,  f ,  q+, 
c = M,' + & 2 C l ( X , L ,  q+, 
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where M, is the Mach number of the external flow. The problem may be reduced to 
the solution for the pressure, which is governed by the axisymmetric form of the Prandtl 
Glauert equation, viz 

1 
(1 - M&)P1.8.8+ pP1r + P l P i  = 0. (2.6) 

The solution to this will be discussed later. 
The main deck corresponds 'to the transverse scale 

and is the same as planar flow to leading order, with the solution taking the form 

u = Uo(y) + eA(X,qU;(y)+, 
u = -e2A~(x,t)uO(y)+,  

P = &(Y) + &A(X,f )ROy(Y) ,  

p = E a P ( X , t ) + .  

(2.8) 

Uo(y) and Ro(y) are the axial velocity and density distributions respectively, in the undis- 
turbed boundary layer. 

Taking the limit of the u expansion as y + 00 in (2.8) yields an inner boundary 
condition for (2.6) namely 

whilst if y + 0, the no-slip condition on the wall is violated, and this demands the presence 
of a lower deck wherein 

- 
PlF IP=a= Ax.8, (2.9) 

E = y/e = 0(1), 
and 

u = XP +€D(X,E,f)+, 
u = e2P(X, E, r)+, 
p = 2 P ( Z ,  ii, q+, (2.10) 

P = a , ( o ) + e P , , ( X , E , q + .  

x = ce I M; - 1 I-' (TW/T,)~X, 
E = c r  I M& - 1 I - &  (T,/T,)#Y, 
P = c' I M& - 1 I-' P, 

0 = c )  I M& - 1 I-' (T,/T,))U, 

P = C H  I M& - 11' (T,/T,)+, 
A = c8 I M& - 1 I-' (Tw/Too)%A, 

ii= C B  I M: - 1 1-g (T,/T,)Ta, 
t= cf I M& - 1 I-' (Tw/Too)t. 

At this stage it is convenient to scale out a number of the physical parameters. Following 
Kluwick et a1 (6) ,  this is achieved with the following transformations 

b 

3 

3 3 

(2.11) 
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Here C is the Chapman constant which arises from the linear viscosity law 

P*/& = C(T/Too), (2.12) 

and the nondimensional wall temperature is denoted by Tw . The governing equations in 
the lower deck reduce to the planar incompressible form at leading order, namely 

I 

~ 

(2.13) 

with boundary conditions 

u=v=o  on Y =0,  

U -+ X[Y + A ( X , t ) ]  asY + 00. (2.14) 

The problem is closed by means of solving (2.6) subject to (2.9), giving (symbolically) 

P = L(A).  (2.15) 

~ In general, the system is nonlinear, and requires a numerical treatment; however, 
progress may be made by seeking solutions which are slight perturbations about the undis- 
turbed state U = XU, V = P = A = 0, and this will form the basis for the following section. 

3. Linear Stability 

is thus written 
Here the basic flow is slightly perturbed by a small amount h << 1, and the solution 

U = XY + hU1+ * . - ,  

V = hV1 + - - a ,  

P = hP1 + * a * ,  

A = hA1 + . - a .  

A solution is sought of the form 

u1 = &(Y)E1 + C.C., 

v1 = Pl(Y)E1 + C.C., 

P1 = P1El + C.C., 
A 

A1 = AlEl + c.c.. 

Here 
El = exp[i(aX - nt)] ,  
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and ’c.c.’ denotes a complex conjugate, 01(Y) and ?1(Y) are complex functions of Y 
alone, and $1, AI, a and R are, in general, complex constants. 

The problem for el(Y) then reduces to 

with 

i(aY - n)6,y = I?lYYY, (3.4) 

61=0 on Y = O  

131+A1 as ~ 4 0 0 .  
(3.5) 

At this stage it is necessary to determine the solution of (2.6), subject to (2.9) which 
yields: 

A i aK0 ( iau) a 1 

K1 (ia.) 
P1 = - 

This solution (see Ward (7) and Kluwick et a1 (6)) is chosen such that information prop- 
agates downstream along the characteristics of (2.6) . Kn(z)  denotes the modified Bessel 
function of order n argument z. 

The system comprising (3.4), (3.5) is closed by utilizing (3.6) with 

which arises from evaluating (2.13) on Y = 0. 

solution is only possible if the following dispersion relationship is satisfied 
The solution for ??1y may be written down in terms of Airy functions, and a non-trivial 

where 

It is well known that neutrally stable Tollmien-Schlichting waves arise from (3.8) when 
Imag{a} = Imug{R} = 0. It is also worth noting at this stage that in the limit of a 00, 
i.e. the flat plate limit, (a fixed), (3.6) degenerates to the plane supersonic interaction 
condition - --iai&, (3.10) 

which is known to exhibit only decaying solutions (see for example Ryzhov and Zhuk (8) 
). On the other hand, in the limit of a very thin cylinder (or needle) , namely a -+ 0, then 

$1 - -a2uA, loga, (3.11) 
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which is akin to the interaction condition found in certain jet and channel flows, (see 
Smith (9)), which does admit growing Tollmien-Schlichting instabilities (Bogdanova and 
Ryzhov (10)). From these somewhat qualitative observations, we may suspect that prior 
to a thorough investigation of the roots of (3.8) , growing Tollmien-Schlichting instabilities 
are possible (at least over a range of a). 

A search was carried out (using Newton interation) for neutral roots of (3.8), i.e. for 
which Irnag{cy} = Irnug(n} = 0, with X = 1 (indeed, X may here be scaled from the 
problem, but is retained for the purposes of the following section). No roots of this type 
were found for a > a0 = 0.003 (approximately, although it is likely that an infinite number 
of exponentially decaying roots do exist in this regime). For a < a0 it was found that two 
neutrally stable roots exist for each value of a. Figure 1 shows the variation of neutral 
frequency with a, whilst Figure 2 shows the variation of wavenumber with a. 

Notice that both It and a become unbounded at  a --+ 0, and this can be confirmed 
analytically. First consider the lower branch, marked L in Figures 1 and 2. We seek an 
asymptotic solution to (3.8) in the limit as a --$ 0 with €0 = 0(1), and a = O(a-'). Then 
it follows that 

(3.12) 
Ko(iaa) i?r - -kcYa(ln(a) + - + 7 + * - .}, K1 (iaa) 2 

where = 0.577215.. ., and so 

(3.13) 

Hence the leading order term on the right-hand-side of this expression has argument ~ / 6 ,  
and it is well known from planar incompressible stability studies (see Smith ( l ) ,  Hall and 
Smith (3)) that the right-hand-side of (3.13) has this same argument when 

1 
€0 N -2.298i5, (3.14) 

which corresponds to 

At  leading order (3.13) then becomes 

cy:a I log(aa) 

1 
N is. 

I- XQ. 

(3.15) 

(3.16) 

This is a transcendental equation linking a to a (see Duck (11) for a similar type of 
situation); however it may be solved by successive approximations for a >> 1. 

The first approximation gives 
cy = O(a$). (3.17) 
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The second approximation gives 

) +, 
CY =(4a I loga I 

7x 8 
(3.18) 

(this process may be continued further, with the inclusion of terms like log I loga I etc., 
but we shall terminate the approximation at this stage). 

Taking (3.18), we obtain an asymptotic expression to n, namely 

) +. 7x : n N 2.298( 
4a I loga I (3.19) 

The asymptotic results (3.18) and (3.19) are indicated on Figures 1 and 2 by broken 
lines, and the agreement with the computed results as a + 0 is seen to be satisfactory. 
(We cannot expect better agreement in view of the likely largeness of the correction terms 
to (3.18), (3.19) which have been omitted.) 

We now turn to consider the asymptotic form of the upper branch (denoted by U on 
Figures 1 and 2) as a + 0. Since we are concerned with neutral modes, it is convenient to 
set 

€0 = - i § R ,  (3.20) 

R = Zl/a%, (3.21) 

CY = O(a-l). With these 

1 

and to seek solutions to (3.8) for which R =I €0 I+ 00, 

restrictions, (3.8) becomes 
a + 0, 

- X ~ ( i a ) ~ ( l n ( a a )  + - in + 7 + 
2 (3.22) 

i.e. 
crea[ln(aa)+ f i + 7 + - . 1  2 - x + R + ~ - * R - + + . . . I .  (3.23) 

We now take the leading order real and imaginary parts of this equation separately to 
yield two (real) equations linking CY, R ( n )  and a, namely 

aga I zn(aa) 1 -  X + R ,  (3.24) 

The leading order terms in the solution for this system are 

(3.25) 

(3.26) 
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These asymptotic results are shown as 'dot-dashed' lines on Figures 1 and 2. The 
agreement is not as satisfactory as that for the lower branch asymptotic behaviour consid- 
ered previously; here the presence of the many log, log log etc. terms considerably degrades 
the convergence of the asymptotic series. However results obtained by the authors (not 
shown here) for a << indicate the proposed upper branch structure to be correct. 
The existence of two modes of instability, found above, suggests that interaction between 
them must be taken into account when studying the nonlinear problem. We consider this 
aspect in the following section. 

4. Wave interactions in the weakly nonlinear regime 
Here we shall discuss the nonlinear nonparallel interaction of two axisymmetric 

Tollmien-Schlichting waves at a value of a less than the cut-off value ao. The interaction is 
essentially similar to that given by Hall and Smith (3) for three-dimensional interactions 
in incompressible flow so all of the details will not be repeated here. We first note that the 
Tollmien-Schlichting waves vary on the triple-deck length scale e-' in the linear regime. 
Now we are concerned with their possible equilibration on a longer length scale centred 
on the downstream position where they are locally neutrally stable. It was shown by Hall 
and Smith that the appropriate length scale where nonparallel effects are most important 
is O ( E ~ ) .  At distances large compared to &g downstream of the neutral position the 
disturbances suffer no nonparallel effects to the order given in our calculation. 

The linearized form of the evolution equation for a Tollmien-Schlichting wave of am- 
plitude B in an O(sg) neighbourhood of the neutral position zn can be derived from (3.8) 
by writing 

and expanding to give 

where 

where 

Thus on the basis of linear theory it follows that in an O(s8) neighbourhood of xn, B is 
given by 

-oR' 
B = constant e -  (4.3) 

This linear growth will take the size of the initial disturbance to a size where nonlinearity 
cannot be neglected. This occurs when the x velocity component in the lower deck is of 
order E f . 
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Suppose then that at z = xn the two modes with (a,n) = (aj,nj),j = 1,2 are 
neutrally stable. We define Ej,j = 1,2 by 

where kj and nj are now real quantities. We must expand aj and nj in the form 

where (aj0,fIjo) and (aj1,fIjl) are chosen such that the waves are neutrally stable at 
2,. Thus (ajo,  n j o )  are as given in $3 whilst (kjl ,  nil) can be found by continuing the 
expansion procedure of that section to next order. For the purposes of this calculation we 
do not need to know (aj1, n i l )  so we give no further details of their determination here. 
We suppose that the waves have grown sufficiently for nonlinear effects to be important 
so that in the lower deck the appropriate expansion is 

(u ,u ,p)  = ( d Y , O , O )  + { A [ ~ f U l l , ~ ~ V l ~ , ~ ~ ~ l r ] [ l +  o(~)]El 

+ B [ e ~ U l 2 , r ~ v l 2 , e ~ P , , l I I  + O(.)]E2 + A 2 [ € ~ u 2 1 , e ~ v 2 1 , € ~ ~ 2 1 ] [ l  + 0(4]  

+ B2[c5U22, ~ g V 2 2 ,  ~ g P 2 2 ] [ 1 +  O(E)]E~ + A B [ E ~ U ~ ~ ,  ~ g V 2 4 ,  ~ b ~ ~ ] [ l +  O(e)] 

+ A B [ E ~ U ~ ~ , E S V ~ ~ ,  ~ i P ~ ~ ] [ l  + O(E)]E~E~} + C.C. 

+ I A l 2  ( ~ 8 U 2 5 ~ 0 ,  0][1+ O(B)]+ 1 B l2 [~%U2e,  0301 + 
( 4 4  

Here the factor [ ~ + O ( E ) ]  is needed because aj and flj are 'neutral' to order e and the terms 
represented by - - include the effect of the interactions between first harmonic, mean and 
fundamental terms. These interactions produce terms proportional to E1 and E2 and it is 
the solvability condition on the equations for the coefficients of these quantities which give 
the required amplitude equations for A ( k )  and B(k). We further expand X in the form 

to account for the variation in the shear stress away from the neutral position . In the 
main and upper decks similar expansions can be written down but there is no interaction 
between the modes so that the solutions of the equations are essentially unchanged from the 
linear analysis of $3. For that reason we shall not write down the expansions in these layers 
but merely quote the required matching conditions for the lower deck where needed. It is 
a routine matter to substitute the expansions (4.6), (4.7) into the Navier-Stokes equations 
and equate like powers of e for each Fourier component. 

(U12, V12, P12) are simply the eigenfunctions of the linear problem appropriate to (a, 0) = 
The zeroth order equations for the fundamentals show that (U11, V11,  PI^), 
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(alo, nlO) and (a, n) = (azo, 0 2 0 )  respectively. At next order the equations for the func- 
tions proportional to E:, E:, El&, E l &  are obtained. We find that (U21, V21, P21) sat- 
isfies 

(-2inlO + 2ia10X(zn)y}U21 + V2,X = -2ia1oP21 + u& - {ia10U,2, + V l l U i J ,  

2ia10u21 + v,l, = 0, 
u21 = v21 = 0,Y = 0, 

(4.8a, b, c) 

and the required matching conditions imposed by the main deck are 

The function (U22, V 2 2 ,  P22), (U23, V23, P23) and (U24, v24, P24) satisfy similar inhomoge- 
neous differential systems with the wavenumber and frequency changed appropriately and 
the nonlinear term on the right hand side of (4.8a) replaced by -{ia20U?~ + V12Ui2}, 
- {i(a10+a20)U11V12 +V12u:~ +V11Ui2} and - { i ( w o  -~20)u11~12 +V11ai2} 
respectively. In the absence of the inhomogeneous term the above systems would of course 
not have a solution. Finally at this order the mean flow correction functions U25 and u26 
are found to satisfy 

The next order system in the expansion procedure leads to equations which determine 
a l l ,  ar21 the correction terms in the expansions of the neutral wavenumbers. However the 
system obtained next involves terms proportional to E l  and E2 produced by nonlinear 
interactions and nonparallel effects. Thus, unless the required orthogonality condition is 
satisfied, there will not be a solution of the equations obtained at this order. After some 
manipulation the required solvability conditions yield 

(4.10a, b) 
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Here c1 and c2 are given by (4.2) with (n, a) = (Tzlo, a10) and (n, a) = (n20, a z o )  respec- 
tively whilst al, b l ,  a2, b2 are defined by 

Here F1, F 2 ,  GI, G2 are given by 

(4.12a, b, c, d )  

whilst rl (Y) and r2 (Y) are the adjoint eigenfunctions defined by 

5. Results and Discussion 
Following Hall and Smith (3) it is an easy matter to generalize (4.10) to the case 

where the wave has moved a distance O(h2) where h is small compared to unity but large 
compared to E : .  Here the variable 2 is now defined by 

I 
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7 
and the size of the disturbances discussed in $4 are now changed from, for example, u - 
in the lower deck to u - eh. We then find that (4.10) becomes 

(5 .1~ ’  b)  

where X = X(zn) + Ah2 + e. A further generalization of (5.1) is obtained by detuning the 
frequency of either of the Tollmien- Schlichting waves by an amount sufficient to introduce 
further linear terms in these equations. Without any loss of generality we suppose that 

I the ’A’ mode is determined so that (5.1) becomes 

Here g1  is a complex constant with g l r  > 0 if the A mode is the most unstable and g l r  < 0 
otherwise. In order to discuss the solution of (5.1) we write 

6 =I A 1 2 ,  11, =I B la, 
so that 

( 5 . 3 ~ ’  b) 

Apart from the trivial solution 6 = 11, = 0 the following finite amplitude solutions are 
possible. 

, a. 6 = 0 Q = C~,AU;, .~ 
b. 6 = (c1tA - d1r)ay; , 11, = 0, 

C. 6 = [ ~ 2 r ( c l r ~  - d l r )  - ~2rblrIjalra2r - b l r b t r ) - l ,  

$ = [Clr  - 6b2rIa;;l. 
Here a subscript r denotes the real part of a quantity. We refer to a, b, c as the ’pure 
B’, ’pure A’ and the mixed mode respectively. The range of values of A for which the 
different solutions exist and their stability properties depend on the coefficients in (5.3). 

b2r are all negative. 

The results in Table I show that % < * < % for all the values of a used in the 
calculations. It is straightforward to shi& tha?;n this case whichever mode bifurcates first 
remains stable at all values of A and suffers no secondary bifurcation to the mixed mode. 
The second ’pure’ mode to bifurcate is initially unstable but then undergoes secondary 

I 

I This problem has been discussed by Keener (12) for the case when c l r ,  ~ 2 ~ ’  al,, a2,., b l r  and 

I 
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i 

bifurcation to the mixed mode. The mixed mode is always unstable but the pure mode 
from which it bifurcates is stable after the bifurcation. Thus at sufficiently high values of A 
either pure mode is a possible stable state. However if the modes are set up by increasing 
A we would of course expect to observe just the most unstable linear mode. These results 
are illustrated in Figure 3 for the case where the pure A mode bifurcates first. When a 
tends to its critical value from above the two modes become identical so that for example 
a1 4 62 and 2al -+ 61.This served as a useful check on the calculations. 
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Figure 1. The variation of the neutral wavenumber with a. 
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TABLE I 

a a /b r r  b /a r 
- 

,0028 

,0026 

.0024 

,0022 

,0020 

,001 8 

. 001 6 

.0014 

.0012 

.0010 

.0008 

.0006 

,590 

,592 

.592 

.589 

,585 

.580 

.5 74 

,567 

.559 

.549 

.537 

.526 

1.684 

I .672 

1.666 

1.660 

1.655 

1.651 

1.647 

1.645 

1.643 

1.642 

I. 643 

1.642 

.935 

.916 

,907 

,903 

,903 

,905 

,904 

.915 

,922 

,931 

.94 3 

.952 
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